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Abstract —The noise performance of multiport networks of arbitrary
topology is treated using wave analysis. This approach has advantages over
other methods when using computer-aided design programs that are based
on scattering parameters. In this paper we discuss the wave representation
of noise in two-ports and passive multiports. We indicate how to compute
the noise performance of an arbitrary network and we demonstrate the
effectiveness of this approach with an example.

I. INTRODUCTION

S COMPUTER-AIDED DESIGN (CAD) increases
for microwave circuit and system development, it is
imperative that compatible analysis techniques be devel-
oped for the noise performance of these circuits and sys-
tems. Recently, Rizzoli and Lipparini [1] showed how the
noise behavior of multiport networks of arbitrary topology
may be analyzed in terms of impedance and admittance
parameters. They extended the use of the usual four spot
noise parameters defined by Haus [2], to handle circuits
which include any kind of passive components introducing
only thermal noise and any number of two-port devices.

In this paper, we approach this problem from the wave
analysis point of view used by Rothe and Dahlke [3],
Penfield [4], and Meys [5]. This approach is compatible
with CAD software packages that are based on scattering
parameters. One such package, called CAAMS, has been
developed at the University of Massachusetts under spon-
sorship by Sariders Associates, Nashua, NH. SUPER-
COMPACT, TOUCHSTONE, etc., are other commercially
available packages that use scattering parameters in ad-
dition to the impedance and admittance parameters. The
wave approach includes those advantages explained by
Siegman [6] of using forward- and backward-traveling
noise waves rather than equivalent voltage and current
noise sources.

Analyzing the noise properties of microwave networks
using the wave approach is certainly not original. Previous
authors have modeled two-port networks where two corre-
lated noise-wave sources are located at the input of the
two-port. In analyzing noise in systems containing multi-
port networks, however, we choose to place one noise wave
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source at each network port. This approach allows us to
conveniently compute the noise properties of the overall
system in terms of the scattering parameters that are used
to analyze the system’s gain performance.

We discuss the wave representation of noise in a noisy
two-port in Section II and the more general problem of
noise in passive multiports in Section III. In Section IV,
we show how the noise analyses can be applied to comput-
ing the noise performance of a microwave network of
arbitrary topology. We conclude the paper with an exam-
ple in Section V.

II. REPRESENTATION OF A NOISY TwWO-PORT
NETWORK

The wave representation of noise in a linear two-port
has previously been described by the noiseless two-port
and the two correlated noise sources shown in Fig. 1(a)
[3]-[5]. We modify this approach by modeling the noise
generated by the two-port as two correlated wave
sources—one at each port—that radiate from the ports into
matched loads. The complex emitied noise waves are des-
ignated as b, and b, in Fig. 1(b). The total noise wave at
the output of the two-port is given by
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where S}, and S,, are scattering coefficients of the two-port
and T is the source reflection coefficient.

The average output noise power generated by the two-
port is given by
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where A4, = (b;b*) are the elements of the correlation
matrix of the noise sources. The diagonal elements 4;; and
4,, are real quantities representing the average power of
each source, and the off-diagonal element A4,, is complex

and represents the correlation between sources. Following
[5], we define noise temperatures for each element:

Ay = <|b1|2> =kT;Af
Ay = <|b2|2> =kT,Af and
A= <b1b;> = kT, Afe”’u. (3)
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Fig. 1. The equivalent representation of a linear noisy two-port using
the noise waves model. (a) Used by [3]-{5]. (b) Used in this paper.

%3

In addition, a total noise temperature 7, can be defined

as
(b, |y = kT, Af )

where k is Boltzmann’s constant and Af is the noise
bandwidth. Substituting (3) and (4) into (2) gives the total
output noise temperature due only to noise generated
inside the two-port as
2

T,=T,

L,S.

s Jpo___ 2
- SHI‘ +T2+2Re{T12e - SHI‘ } (5)
Thus, T, is a function of the source reflection coefficient T,
with four unknown real quantities: T, T,, T3,, and ¢,,.
These unknowns can be obtained through measurements
by varying the source reflection coefficient and observing
7, in a manner similar to that described by Meys [5] and
Meys et al., [7], [8]. For example, the measured value of 7,
would be T, with a matched source (|| = 0). For small
values of |I,|, T, varies sinusoidally with the argument of
I',. The mean value of T, is T,, and the amplitude of the
sinusoidal variation about T, is proportional to Tj,. The
quantity ¢,, can be determined by measuring the phase of
the sinusoidal variation.

The spot noise figure F can be determined once the
elements of the noise correlation matrix are known. The
noise figure is given by

(F-1)kT,AfG,

2

s + A4, +2Rel 4 L5n
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where I, is the reflection coefficient looking into the
output port when the source is connected to the input. G,
is the available gain of the two-port, given by

o = (=ILP)ISul®
“ (1- TP - ST

and T, is the reference temperature.

(7)

ITII. NOISE ANALYSIS OF PASSIVE MULTIPORTS

Lossy passive networks are assumed to introduce only
thermal noise. This makes the computation of the noise
correlation matrix for a passive multiport easier than for

5
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Fig. 2. The wave representation of noise in a passive multiport at
uniform physical temperature.

an active two-port. The equivalent noise waves repre-
senting the thermal noise generated by a network having n
ports are shown in Fig. 2 as by, b,,--+,b,. The nXn
correlation matrix P of these noise sources is given by

= [(bdFy], i, j=1,2,---,n
=kAfT,N (8)
where T, is the physical temperature of the multiport

network and
N=I-SS". (9)

Here, I is the unit matrix, § is the scattering matrix of the
n-port, and ST is the transposed complex conjugate of §.
Bosma [9] refers to N as the noise distribution matrix
because it describes the distribution of the noise power
generated within a passive multiport over its output ports.

We note that the physical temperature 7, of a multiport
network may not be equal to the reference temperature T,
as is often assumed. Furthermore, in a large system, the
individual passive networks are not always at the same
temperature. Consequently, our analysis allows each pas-
sive network to have its own physical temperature.

How can the physical temperature be obtained? We
propose a possible method of calculating 7, from measure-
ments.

If all ports of the n-port in Fig. 2, except i and j, are
terminated in matched loads, G, is the available gain from
port j to port i defined by (7). Assuming that the matched
loads are in thermodynamic equilibrium with the multiport
network, the temperature of each load is 7}, under these
conditions. The total output noise temperature T;; avail-
able at port i is given by [10]

" |1- Z G,
m ; 1

The first term on the right-hand side of (10) represents the

contribution from the network-generated noise while the

second term is the contribution from the matched loads.
Expansion of this expression leads to

Tij = (1' Gij)z;z’

n

T, ¥ Gy (10

m=1
m*i,j

(11)
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With the above arrangement, the noise figure from port j
to port i can be expressed as

kT, Af
=14+ —t" 12
=1 kT AfG,, (12)
Combining (12) with (13), we obtain T, as
_(Fy-1)TG,
13
= (13)

and the correlation matrix P for a passive multiport can
be specified completely.

IV. SYSTEM OF ARBITRARY TOPOLOGY

Once the noise correlation matrices of constituent multi-
port networks of a system are obtained, the overall correla-
tion matrix of the resultant waves at the external ports can
be calculated in terms of the individual correlation matrices
and the scattering parameters. A general connection of
arbitrary multiport component networks is shown in Fig.
3. Let the total number of component networks be m and
the number of external ports in the overall system be #. In
order for the network topology to be absolutely general,
we assume that the component networks can have any
number of ports.

In Fig. 3, By, B,,: - -, B, are the equivalent noise waves
emitted from the external ports that represent the total
noise generated within the overall system. The noise waves
representing the noise generated by individual networks
are designated as b/, where the superscript j represents
the network number and the subscript r represents the
port of this network from which the wave emerges.

A resultant wave from the kth external port, B,, con-
sists of the contributions from all the components in the
network, and is given by

14! b2 P
B,= 3 b, + X b2+ -+ X BTS,,, (14)
r=1 p=1 p=1

where 37, represents the summation over all the p; ports
of the jth network. S, is the transmission coefficient
from the port connected to port p of that network (desig-
nated in Fig. 3 as p’) to the external port k. Note that S, ,,
includes all the possible transmission paths from port p’
to port k, including reflection at port p’. In order to
compute the resultant wave, B,, a CAD program must be
able to calculate the overall transmission coefficients from
every internal port to the kth external port.

The equivalent noise wave sources of a network are, in
general, correlated with each other but they are uncorre-
lated with other network noise sources. With this in mind,
the cross correlation of the waves B, and B, at the
external ports k and [/ can be obtained from (14) as

14290 5!

<BkBl*> = Z Z(b;ltb}*>skp’sl’rk’
rop

Pt Pm

o+ X L AbyBr S, S (15)
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Fig. 3. A general connection of m linear noisy multiports.

To express (15) in a matrix form, let us introduce the
following notation:

b’ correlation matrix of noise waves for network j,

S row matrix of transmission coefficients from all the
ports connected to the ports of network j to the
external port k.

With the above notation, (15) can be expressed as

(BiBty= Y Si-b’S/T
j=1

(16)

and the noise correlation matrix 4 of the overall system is
given by

A=[(BB*)], k,1I=1,2,---,n (17)

V. AN ExamrPLE

The algorithm described in the previous section was
implemented as part of a general-purpose microwave sys-
tem analysis program developed at the University of Mas-
sachusetts. The program is called CAAMS (computer-aided
analysis of microwave systems). CAAMS, which runs on a
VAX 11/750 computer, reduces the network topology by
eliminating one interconnection (i.e., two ports) at a time
in the manner described by Filipsson [11]. This procedure
eliminates the need for matrix inversions and results in an
efficient use of the CPU time. Also, the interconnections
are eliminated in such a way that the resultant network has
a minimum number of external ports at each stage of the
computation. The intermediate values of the calculated
scattering parameters are updated to yield the transmission
coefficients S, in (14) for each interconnection.

As an example, we calculated the noise figure of the
simple system shown in Fig. 4. The S-parameters for each
component were measured from 8 to 16 GHz in steps of
1 GHz on an HP8510 automatic network analyzer and
then read into the program through an interface between
the network analyzer and the VAX computer. The noise
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Fig. 4. Block diagram of the subsystem used as an example.
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Fig. 5. Noise figure of the subsystem depicted in Fig. 4.

figures for each network were measured at the above
frequencies, as was the overall system noise figure. The
measured and calculated results are shown in Fig. 5. The
networks and topology of our example were chosen so as
to investigate the effects of interstage mismatches and
transmission line lengths on the overall system noise fig-
ure. CAAMS is equipped with a routine to perform the
sensitivity analysis on any network in the system. The user
can vary the signal and noise parameters of a network in
increments to observe the effects on overall system perfor-
mance. ‘
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